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This paper has two aims. The first aim is to investigate the behavior
of recently introduced fifth-order compact upwind differencing (CUD-
5) in conjunction with different high-order time stepping schemes by
the examples of 1D and 2D advection {including the test on the sphere
with the flow over the poles). The second aim is to demonstrate the
powaer of CUD-5 with moisture transport equation in general circula-

tion modeol of the atmosphere,  © 1904 Acidensic Press. Inc.

The problem of moisture transport in general circulation
model of the atmosphere (GCMA) incorporates very steep,
rapidly changing gradients. Besides, the moisture is essen-
tially positive function and erroncous negative values can
cause problems of a physical or numerical nature in GCMA.
Moisture transport places rigid constraints on the numeri-
cal algorithm. These demands were discussed in [[1]. Here
we note that in this problem the main goal of the algorithm
design is to provide conservation and quasi-monotonicity
{i.e., the absence of spurious oscillations) properties
simuitaneously as well as the absence of negative values. It
is well known that in some modern high-accuracy schemes
the absence of spurious osciliations is provided by introduc-
ing an artificial dissipation in the vicinity of steep gradicents
of solution (FCT, TVD). However, if you arc to simulate
the impact of CO; or ozone on the atmosphere you should
integrate GCMA for a very long time and artificial dissipa-
tion may result in unrealistically smooth. distributions.
Many works were devoted to this problem (see, for exam-
ple. [1-37). The aim of this work is to produce an efficient
algorithie m Bolerian formuiation {or selving 2 moisture
transport cquation on the basis of the recently developed
fifth-order compact upwind differencing and high-order
implicit  time-stepping  meeting  the above-mentioned
demands.

1. FIFTH-ORDER COMPACT UPWIND DIFFERENCING

The fifth-order compact upwind differencing (CUD-5)
was introduced in 1991 [47]. It has remarkable properties of
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small phase errors and dissipation concentrated on short
waves, Complete derivation of CUD-5 is presented in [47].
Here we describe the idea of its construction.

On a difference grid with constant step # we construct the
fifih-order accurate operator of the first differentiation using
the first-order upwind operator A(s} of the form

A(s) f= (Ay—s5 A1,
Aof=ff+|_fi—|- N
Arf=firi =26+ 1oy

For the operator of first differentiation D, = d/dx we write
formal series

1 | 1 1
D=t aw+{i—Lip +wpr—pp
. 21;"“”( 3 Pt D gas ! )

x%h D, (2)

where non-zero parameler s is supposed to be constant.
We replace the expression in parentheses by the operator
Pad¢ approximant PU"")=R-'Q [5] with accuracy
O(H"+"+1), where

R=1+Y bp(h D),
k=1

Q=143 a"th D)
k-

and 7 is the identity operator. To ensure total {ifth-order
accuracy we usc the approximants P1¥"7 and U721,

Further, we construct difference operators ¢, and R,
satisfying the following two conditions:

(i) The operator R, !, approximates R ~'Q with the
error O(/*).

(i1) The number of-nodes of the scheme for R, may not
cxceed three.
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For this construction we utilize formulas of third order

[103:

L

D =3 (Als: )" 4is,) + O,
A(sl):1+%~%do, @)

$,=const #0,

If we apply them to the operator Q,, then conditions (i)
and (ii) result in the operators R, and ,:

i 1
RO =1+ Ayt ds,

5
57)

7o
60 95°
Applying the operators (4) to both operators R, and ,, and

taking into account conditions {i)-(i1), we obtain that for
|s| = 2/\/3 these operators become

b s b
EI ! -2z
R (2 4)A +(6 23,)A2,

(5)
Q(l)

Using now the Padé operator
(I+4,/12)~" 4

approximant D2=
»/h* + O(h*), we construct the operator
2 P

1 —1
Edz) Az) u. (7)

Depending on the type of discretization for R, and ¢, we
will denote the corresponding operator L, as L{" or L.
Parameters 5 and s, should change their sign as usual in
upwind schemes.

One can see that this approximation of spatial derivative
requires inversion of tridiagonal operators. It was proved in
[4] that operators (5) and (6} are positive definite for s >0
or negative definite for s<0 if |s] >\/§/—3 in the case of
operators (5) and sgns,=sgns, |s,|> < in the case of
operators (6). The proper choice of s (upwinding) provides
the stability of CUD-5 for frozen coefficients approximaton.
Dispersion and dissipation properties of these operators are
described in the Appendix. Here we note that the
parameters s; of L, as well as s for 21", controls phase
error and dissipation for waves in the range of 2/ to 64: the
greater s, (or respectively s), the greater is the dissipation.

L,(uw)= 2]}1 (A(s) +sR;7'Q, (1+
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The choice of these parameters has also to a certain extent
an effect on the stability limit (see the Appendix). The cost
of this discretization is at least 21 arithmetic operations per
grid point.

In the grid points where velocity changes its sign, the
direct application of such spatial discretization leads to the
loss of the conservation property. To preserve this property,
the idea of flux splitting suggested in the early eighties can
be used [8, 9]. The flux splitting leads to an increase of the
amount of arithmetic operations, but now both three-point
operators R, and 7+ A,/12 can be inverted in advance.

For the first type of CUD-5 several 1D tests suggested by
Carpenter et al. [3] and 2D advection test were performed
[7]). In these tests several types of implicit time stepping
were checked with a focus on third-order schemes. The
reasons for such a choice are as follows,

The limitation of CFL = 1 imposed on the time step for
moisture transport in Eulerian formulation is quite natural
due to the approximation requirements. Therefore we need
only to provide conditional stability. Routine explicit time
stepping is usually used with CFL numbers which are small
enough to provide sufficient stability and a small error due
to time stepping. Thus computational efficiency of CUD-5
may become quite sufficient, if the computations are
performed with CFL numbers ~1 and the errors due to
time stepping are negligible. So the reason for selecting
time stepping of sufficiently high order in this paper is its
accuracy for all admissible CFL numbers.

In tests for a 1D advection equation written in conser-
vative form,

dg 0
2q , dug

a ox (8)

several implicit time schemes were tested [7]. Here we use
the best of these schemes—-Adams third-order implicit
scheme,

w4+ 1 n

¢ —q"= —t(FL(ug" " "y + EL,(ug")

(
2 Li(ug" ")), (9}

and the explicit Runge—Kutta third-order method,

¢V = L(u'q"),

9(2}=Lh (“n+!/3( 3(17(”))
q(3): Lh (un+2/3 (qn_%rqtzl))’
n+ 1

T
¢ =gt = = (g 3¢,

(10)
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Optimum time stepping should provide minimum errors
for the whole range of admissible CFL numbers. So tests
should be performed for different CFL numbers, taking into
account that for small CFL numbers all time integration
schemes usually provide negligible errors. As will be clear
from the further discussion, a certain disadvantage of the
paper [7] was that all tests were performed only for
CFL =0.5, as well as those in the paper of Carpenter ez al.
[31.

Now we consider 1D tests suggested in [3] for the spatial
discretization LY in conjunction with the two third-order
time stepping schemes (9) and {10). These tests are
described by Eq. (8) in the periodic interval of 40 points for
rectangle and triangle distributions or 80 grid points for a
Gaussian initial distribution with constant velocity. One
hundred time steps were performed for rectangle and
triangle distributions, while for the Gaussian distribution,
800 time steps were performed. Implicit time stepping was
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FIG. 1. 1D advection with L{? in the periodical interval for different
types of initial distribution, CFL =0.5: A—time siepping (9}, B—time
stepping (10).
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implemented using a GMRES solver with a Hausholder
transformation [117]. The results of these tests for time step-
ping (9) and (10) and CFL = 0.5 are shown on Figs. 1A and
B, respectively. The better results for the rectangle initial
distribution were obtained when flux corrected transport
(FCT) [13] was applied to the solution at each 10th time
step (not shown). Comparing these curves with those for
L{" (Fig. 2) one can obviously see that LY’ provides better
results. Increasing the parameter s for LY one can achieve
the same extreme values of the distribution as for L$ tests
but the phase error becomes noticeable in this case (not
shown).

The comparison of many other schemes (among them
van Leer and Smolarkiewicz schemes } was given in [3]; the
best results in this paper being for the piecewise parabolic
method (PPM). We may note that CUD-5 in the case of a
Gaussian initial distribution gives a better curve than PPM
[3], where the maximum decreases to 0.881. For the
triangle distribution they are comparable: PPM decreases
the maximum to 0.768 without a steepening procedure and
to 0.828 with steepening, the shape of the distribution in the
latter case being similar to the rectangle. PPM generates no
spurious negative values. In the case of LY we have the
maximum vajue 0.868 with the maximum negative value
—0017. Applying FCT periodically one can eliminate the
negative value in this test, the maximum value being about
0.75 (not shown). The results of applying LY for the rec-
tangle distribution are worse than that of PPM since LY
cannot simulate the waves with lengths 2/ and 34 properly.
11 is also worth mentioning that the PPM is more expensive
than CUD-5. As for time stepping, the schemes (9} and (10)
provide comparable results for CFL =0.5, as was in the case
of LM [77.

Let us discuss the role of the parameter s, in LY. As is
shown in the Appendix, the optimum choice from the view-
point of phase error is 5, = 1.1, but when increasing s, the
stability limit of time stepping (9) also increases. All the
results for 1D tests with time stepping (9) were obtained at
5, = 2.05. If one sets greater s, the results will be smoother
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FIG. 2. 1D advection of Gaussian initial distribution with L%",

CFL =0.5: A—time stepping (9), B—time stepping (10).
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with much smaller undershoots, but the rectangle distribu-
tion in this case will be degenerated to a smooth wave (not
shown). However, if we set s, = 1.1, a conditionally stable
time scheme (9} demonstrates a very weak instability for the
test with a Gaussian initial distribution and 800 time steps
(the increase of the L, norm is about 2% —not shown). So
if one uses unconditionally stable time stepping, the s,
should be equal to 1.1 and the value s; =~ 2 may be recom-
mended for time stepping {9). The same reasoning can be
applied to L{"". The value of s corresponding to the minimal
phase error is equal to 1.3 in this case and the recommended
value for time stepping (9) is about 1.6. However, is was
found during 2D tests for LY that the best results were
obtained for s; = 0.3 which can be explained by the impact
of boundary conditions. The same conclusion was drawn for
Runge-Kutta time stepping. Hence, the choice of free
parameters in LY in the case of conditionally stable time
stepping seems to be dependent on the time integration
scheme as well as on a given problem,

To verify these results and also to select the best time
stepping, the 1D test for L with Gaussian initial distribu-
tion was repeated for CFL =0.875, 5, = 2.05. In this case we
arc beyond the stability limit for time scheme (9) (see the
Appendix) but due to the small enough amplifying factor we
were able to obtain realistic solution after 800 time steps.
The results are shown in Fig. 3. We may conclude that the
Runge-Kutta method (10) provides better results due to its
greater stability limit.

To investigate the shape-preserving property of the L,
operators, a 2D advection test on the sphere with the flow
directly over the poles was also carried out. This is the first
test from the set of tests for shallow water equations in
spherical geometry [12]. This test is important since near
the poles meridians of the spherical coordinate system
converge, resulting in local CFL numbers of order 10 near
the poles. The test is described by the equation

d 1 a a
&g (ﬂ+ b cos fP‘?):o,

&t acoso\ 04 dp

2
.2
o

1.
b

0.8
0.8

]

Bo® ™ BG40 B0 80

e ol

5040 B0

[ -.025. [ -.011, .9221

0.4 4,0 0.%

1.1271 o7

FIG. 3. 1D advection with LY, CFL =0.875: A—time stepping (9).
B—time stepping (10).
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where
1= uy(cos @ cos a + sin ¢ €os A sin a),
v=u,sin Asin a,
o @), o= 500(1 + cos(mr/R)) if r<R
7 9)i=0=1y if r>R,

where ¢ is the Earth radius, A is longitude, ¢ is latitude, u is
the A-component of velocity, and v is its ¢-component. The
radius R = a4/3 and the wind velocity u, = 2na/(12 days), ris
the great circle distance between (4, ¢) and the center,
initially taken as (1,, ¢,) = (37/2, 0):

r=a arc ¢os[cos ¢ cos{i — 3xn/2)].

The initial distribution of g is the cosine bell. 1t is shown by
dashed lines in Fig. 4. The parameter « is the angle between
the axis of solid body rotation and the polar axis of the
spherical coordinate system. The flow over the poles
corresponds to o = n/2. The results for « = 0 corresponding
to the flow along the equator are of the same quality as for
1D tests with Gaussian initial distribution and are not
shown.

The grid contained 128 points in longitude and 64 points
in latitude. These grid parameters are the same as in [14]
and some other papers. In this test flux correction was
not used. Near the poles longitudinal Fourier filtering
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FIG. 4. 2D advection on the sphere with the flow over the poles for
L and time stepping (9), CFL = 0.2. The initial distribution is plotted by
dashed lines. Plotting conventions are the same as in [127].
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FIG. 8. The time-average zonal mean humidity for the first experiment (second-order horizontal discretization, explicit time scheme).

port aigorithm in GCMA of INM. The moisture transport  where ¢ = p/p, is the vertical coordinate ( p, is the sea-level
equation in GCMA is given as

pressure), F describes sinks and sources of moisture due to
condensation and evaporation.

op.q n 1 (510.;1“1 +ﬁpsv cos (Pq) +5Ps°'q: F, (1) For approximation of space derivatives in horizontal
b . . . - . - -
dt  acosg\ 94 dp do directions CUD-5 discretization L{' is used. Vertical
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FIG. 9. The time-average zonal mean humidity for the second experiment {CUD-35 horizontal discretization, implicit time scheme).
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FIG. 10. The time-average humidity field at o =0.92 for the first experiment (second-order spatial discretization, explicit time scheme).

discretization is routine second-order central differencing

previous section were used for faster convergence of itera-
tions. It takes no more than eight iterations (two of them

on the staggered grid.
with the simple operator A4(s)) for convergence with the

The implicit time stepping via the third-order condi-
tionally stable scheme (9} was implemented with the help of
the GMRES solver with Hausholder transformations {11].
Simple scaling of the matrix and the idea described in the

Lat itude

581/112/2-13

relative accuracy 104,
Two experiments were carried out. The first one was with

the old version of moisture transport (ie., with second-

Longitude

Latitude

ko -100

Longitude

FI1G. 11. The time-average humidity field at o =0.92 for the second experiment (CUD-5, implicit time scheme).
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order central differencing and explicit time stepping),
At=6 min. The second experiment was with LY and the
third-order implicit time stepping (9), 4¢= 60 min. Initial
conditions for GCMA were 1.06.1987 reai data. The GCMA
was integrated for 95 days. Here we describe only the results
for the moisture. Time-averaged zonal mean (i.e., averaged
over longitude ) humidity field for the first (control) experi-
ment is presented in Fig 8, while Fig. 9 shows this field for
the fifth-order experiment. We may see that for the second
experiment the humidity field is much closer to the observed
field. The false extremum in mid-latitudes vanished; the
whole picture is more smooth. However, upon inspecting
Fig. 9 we see a rather steep gradient near 20°. This gradient
is explained by a rather coarse vertical mesh (seven equally
spaced o-levels) and central differencing by ¢-coordinate.
The analysis of vertical profiles of moisture confirms this
observation. Thus an improvement in the vertical transport
of moisture is also needed for the current version of the
model. Comparing the geographical time-averaged distribu-
tion of humidity at the level ¢ =0.92 for the control and
fifth-order experiments (Figs. 10 and 11, respectively), we
may see that the whole picture looks much better in the case
of CUD-5. Hence, we may conclude that fifth-order
compact upwind differencing is appropriate when solving a
meisture transport equation.

Let us discuss now the cost of this scheme. The new
scheme of moisture transport implemented via GMRES
increases the computer time per one model day by 20%.
However, the new version of our atmospheric model which
is based on semi-implicit time stepping is 2.5 times faster
and the cost of the new moisture transport becomes too
expensive. So currently we are testing Runge—Kutta time
stepping for moisture transport in the model. First
experiments showed that the increase of time per model day
1s 20% for the new model.

3. DISCUSSION

The fifth-order compact upwind differencing used in this
paper possesses the following favorable properties:

{1) small phase and amplitude errors,
(i1}
(iti)
These properties were verified with several 1D and 2D tests.
The implementation of this method for moisture transport
in the general circulation model of the atmosphere has
shown that it works much better than the previously used
second-order explicit scheme. However, this method is
rather costly. To increase its computational efficiency for
unsteady problems time stepping should allow computa-
tions with a CFL number about one without significant

conservation property,

compact stencil of approximation.
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errors due to time stepping. Further investigation of
different time integration schemes is needed, especially the
investigation of explicit Runge-Kutta schemes suitable for
3D problems.

APPENDIX

To study dispersion and dissipation properties of LY’ and
L operators we consider the wave solution of the 1D
equation,

F; d
u+c—u=0.

— 12
ot ax (12)

To exclude the influence of time stepping, we write its semi-
discretized form at the grid point x=x,,,

du
—2 4 cL™Mu,, =0,

dr (13)
{x}=x,. m=0, +1, ...

Looking for the solution of (13) as u, = U(z) exp™”, where
a=kh is in the range of [0, n], we obtain an ordinary
differential equation of the form

dU
—+ W) U=0,

dt (14)

where W(a) is Fourier image of L{” which can be found
easily to be

a
W(x)=1isin a + 2s sin? 3 25

(14 26i sin & — 4¢ sin(«/2)) sin?(2/2)
(1 +28isin & — 4y sin®(a/2))(1 — (1/3) sin?(2/2))’

X

The parameters are

1 17 1
=— =02 o= =———
B 6S, }’ L] 0) 60 932
for LY and
1 1 5
B—E—O.ZSSI, ?—g—ﬁ,
1 5
= ———0.25s, ==t —
b= mis 0B E=gty
in the case of LY.
Comparing (14) with the equation U'+ickU=0

obtained after substitution of U(f)exp™ in {12), we
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obtain the ratio of the “scheme” phase velocity to the exact
velocity ¢,
c* ImW(a)
e a

o =kh.

The dissipation property of LY is characterized by ReW(a).
The graphs of dispersion and dissipation properties of L’
and LY are shown in Figs. 12 and 13, respectively. In these
graphs longer dashes correspond to greater values of 5 (or
s, respectively). One can see that when increasing s (for
Ly or 5, (for LY} the dissipation increases. As far as
dispersion is concerned, the minimal dispersion is obtained
for s = 1.3 in the case of L{" and s, = 1.1 in the case of L{.

To study the stability {imit for the time stepping proce-
dure (9) we introduce time differencing into Eq. (14).
Looking for the solution of this equation as

Ur =4i"exp™™,

we write the characteristic equation for time stepping (9)

5 8 11
L — — At == =0,
A 1+(]2/'+12 12)_)"W(a)

where r is the CFL number. Solving this equation numeri-
cally and demanding that |A| <! for all ae [0, 2n] we
obtain that r,,, should not exceed 0.7 in all considered cases
for minimal admissible values of s and s,, respectively.
When increasing s (or s;), the stability limit slightly
increases. However, the remarkable property of the time
stepping (9) is that the amplifying factor {A| beyond the
stability limit is sufficiently close to one, unlike many
explicit schemes. It was found that the algorithm admits
local CFL numbers of order 1.3 during several time steps
without loss of stability (in this case the amplifying factor
for some harmonics is [A] & 1.05).
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FIG. 12. The ratio of “scheme” phase velocity to the exact one and the
relative dissipation of LY for various 5 as functions of grid wavenumber kh.
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to larger values of s.
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